### Imperial College London

## **Socially beneficial offsetting**

Jeremy Woods Centre for Environmental Policy Imperial College London

Imperial College London MSc in Sustainable Energy Futures

© Imperial College London

### What is needed to accelerate the "greeen" transition?

#### THE EU HAS SUCCESSFULLY DECOUPLED GREENHOUSE GAS EMISSIONS FROM ECONOMIC GROWTH



- **Technological Innovation**
- New visions for sustainable life styles, i.e. in cities!
- Avoiding Leakage and rebound effects?

New Green Deal: Europe's "Man on the moon moment" Ursula von der Leyen (EC President, 11/Dec/2019)

- 1 trillion € by 2030
- 2030 minus 50-55% GHG emissions
- Adopts a net-zero by 2050 approach

How can we help policy makers plot a viable path to Net-Zero?

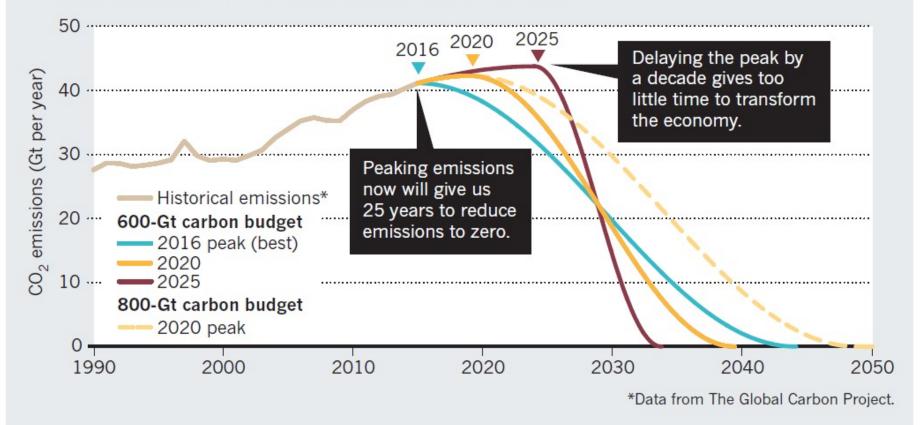
**Explore** sustainable European futures

EUGALC

# Net-zero framing

Different decarbonisation speeds would lead to different cumulative emissions and, hence, to different amounts of warming, even if net-zero is reached at the same time.




Note the difference between 'Net-zero' and 'neutrality': '**Net-zero**' requires both emissions reduction + enhanced sinks '**Neutrality**' only requires that emissions are balanced by enhanced sinks. Is not a viable approach when applied at a global level

Slide adapted from: Bernd Hezel | hezel@climatemedia.de | www.climatemedia.de

# Timing of action - critical

### **CARBON CRUNCH**

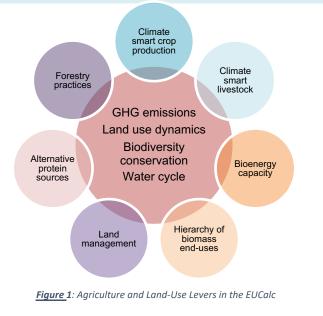
There is a mean budget of around 600 gigatonnes (Gt) of carbon dioxide left to emit before the planet warms dangerously, by more than 1.5–2°C. Stretching the budget to 800 Gt buys another 10 years, but at a greater risk of exceeding the temperature limit.



Figueres et al. Three years to save climate. Nature 5 4 6:5 9 3-595. 2017

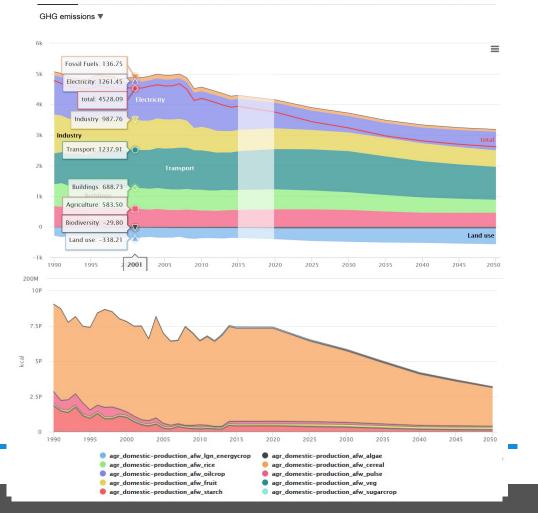
## Using the Global Carbon Budget in EUcalc

Best estimates of the Transient Climate Response to cumulative CO<sup>2</sup> Emissions (TCRE) from climate models and observational data, with corresponding estimates of the CO<sup>2</sup>-only carbon budgets associated with a given amount of CO2-induced global temperature increase. (Matthews et al, 2019)


|              |                                   | CO <sub>2</sub> -only Carbon budgets |                           |                           |
|--------------|-----------------------------------|--------------------------------------|---------------------------|---------------------------|
|              | TCRE                              | per °C                               | 1.5 °C                    | 2 °C                      |
| CMIP5 models | 1.6 °C/1000 GtC                   | 625 GtC                              | 940 GtC                   | 1250 GtC                  |
|              | (0.44 °C/1000 GtCO2)              | (2290 GtCO2)                         | (3445 GtCO2)              | (4585 GtCO2)              |
| Observations | 1.35 °C/1000 GtC                  | 740 GtC                              | 1110 GtC                  | 1480 GtC                  |
|              | (0.37 °C/1000 GtCO <sub>2</sub> ) | (2715 GtCO <sub>2</sub> )            | (4070 GtCO <sup>2</sup> ) | (5425 GtCO <sup>2</sup> ) |

Italicized values in parentheses are in units of CO2 rather than C, where 1 tonne of C = 3.67 tonnes of CO2, and all carbon budget values are rounded to the nearest 5 Gt. Matthews et al. 2017. Estimating Carbon Budgets for Ambitious Climate Targets (Carbon Cycle and Climate. Curr Clim Change Rep (2017) 3:69-77

- Climate effective transition pathways will combine emissions reduction & enhance carbon sinks –
- Bioenergy deployment needs to demonstrate both interventions together
- Bioenergy with carbon capture and storage (BECCS) deploys the capture of CO2 and its storage in geological reservoirs
- BiogasDoneRight needs to enhance soil carbon stocks but can also be deployed with CCS




# **EUCALC** Changes in land use: effects on health, water, biodiversity jobs, economy- EUcalc



#### Warning!

Trade-offs and co-benefits and complex interactions are likely to result from changes to ANY and ALL of the 7 Land Use & Food Production levers Emissions Energy Transport! Buildings Industry Land-use Agriculture Water Minerals! Air Climate! Jobs Costs '>



#### Gino Baudry, Imperial College London





### The offer to Mitigate Carbon Damage Proof of concept stage:

- 2017 total CO<sub>2</sub> available to be traded:
  - 6000 trees = 3000 tonnes CO<sub>2</sub> (tCO<sub>2</sub>) sequestered over 25 years <sup>1</sup>
  - = 120 tCO<sub>2</sub> available for purchase from carbon sequestered in 2017
  - @ £25/t CO<sub>2</sub> = £3,000
    - 10t CO<sub>2</sub> = £250 or 500 macadamia trees 'supported' each year
- 2018 estimated CO<sub>2</sub> available for offsetting:
  - 13,000 trees = 6,500 tCO<sub>2</sub>
  - $@\pm 25/t CO_2 = \pm 6,500$  income to support smallholder farmers

Note:

<sup>1</sup> Conservatively assume 0.5 tCO<sub>2</sub> is sequestered by a macadamia tree over 25 years

Climate Smart Macadamia Agroforestry

**Income generation** 

**Reliable nutrition** 

Environment

Energy





### How much does a tonne of carbon (CO<sub>2</sub>) cost?

High variability within the market as the market is voluntary and the type of carbon reduction project varies:

- Project Type cook stoves, avoiding deforestation, solar panels, industrial emissions efficiency, etc.
- Geography cost of tree planting in Africa is cheaper than the UK
- Policy UK and EU regulations create markets and tax carbon pollution through its EU Emissions Trading System (ETS) which dictate prices
- Business perspective companies choose their own prices for internal modelling based on research and perceived future policies

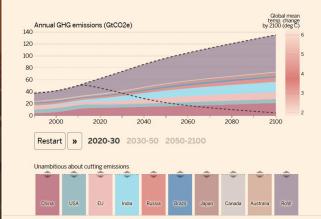
|                                       | Price £/tCO <sub>2</sub> | Av. £ / farmer.yr * |
|---------------------------------------|--------------------------|---------------------|
| Malawi average                        | £3.49                    | £2.73               |
| Plan Vivo average                     | £5.97                    | £4.66               |
| UK Climate Change Levy                | £24.36                   | £19.10              |
| EEA Costs of Air Pollution rpt (2014) | €9.5 to €38.1            |                     |
| Climate Smart Macadamia               | £25                      | £19.60              |
| US EPA Social Cost of Carbon          | £26.72 (inc. 3% p.a.)    | £20.95              |
| Statoil (Internal Price)              | £44.15 (\$50)            | £34.52              |

Average annual income per farmer – assumes typical farmer plants 196 trees

Average household income for HIMACUL/NMT macadamia farmers between US\$21 to 70 per mnth (2014/2015)

# Thank You

Jeremy.woods@imperial.ac.uk http://www3.imperial.ac.uk/icept


#### Prosperous living for the world in 2050: insights from the Global Calculator

Dr Onesmus Mwabonje (BioSuccInnovate) Dr Gino Baudry (EUcalc) Mr Morgan Raffray (EUcalc) Dr Alexandre Strapasson (Global Calc + FT) Victoria Hoare (2050 Calculators) Paisan Sukpanit (2050 Calculators) Sarah Kakadellis (AD and bioplastics) Nicole Kalas (Global Calc + FT) Yuanzhi Ni (BioSuccInnovate) Mireille Rack (Social LCA- EuroChar) Steven Peterson (Dartmouth College, Food & Energy Security) Dr Obinna Anejionu (Uni Nigeria Nsuka) Dr Lorenzo Di Lucia (ILAMS)

#### FINANCIAL TIMES

#### Climate calculator

lse the sliders to set regional ambitions for emissions reduction, first for 2020-2030. ach slider's scope and impacts are unique, based on analysis of the region's apabilities by academics at Imperial College London. After setting yours, let's proceed o the next period...



ttp://ig.ft.com/sites/climate-change-calculator

#### SCOPE • FAPESP • BIOEN • BIOTA • FAPESP CLIMATE CHANGE

72

### Bioenergy & Sustainability: bridging the gaps

EDITED BY Glaucia Mendes Souza Reynaldo L. Victoria Carlos A. Joly Luciano M. Verdade

http://www.globalcalculator.org http://www.european-calculator.eu

#### http://bioenfapesp.org/scopebioenergy/index.php